Software Industry

The following guidelines are intended to provide examples of experimental development projects which would qualify for Canadian SR&ED (Scientific Research & Experimental Development) tax credits.

Content Summary:

 1101 - Integrate SQL Database, X-n, & Internet Servers	1100 – Software SRED – General Guidelines	1
 1102 – DBMS Project (Database Methodology) 1103 - Network Failure Problems 12 1104 - Compression Algorithm 15 1105 – Scaling vs. Speed vs. Compression 18 1106 – Software Data Warehouse Development 21 1107 – MS .NET Development Issues 25 	1101 - Integrate SQL Database, X-n, & Internet Servers	5
 1103 - Network Failure Problems	1102 – DBMS Project (Database Methodology)	9
 1104 - Compression Algorithm	1103 - Network Failure Problems	12
 1105 – Scaling vs. Speed vs. Compression	1104 - Compression Algorithm	15
 1106 – Software Data Warehouse Development	1105 – Scaling vs. Speed vs. Compression	18
1107 – MS .NET Development Issues25	1106 – Software Data Warehouse Development	21
	1107 – MS .NET Development Issues	25

1100 – Software SRED – General Guidelines

Project Details:

Scientific or Technological Objectives:

Μ	е	а	s	u	r	е	m	е	n	t	Current Performance	Objective	Has results?
Per	form	nanc	e (s	step	res	pon	se, tł	nrou	ghp	ut)	5	2	Yes
(sec	conc	ds)											
CPl	J loa	ad ('	% b	usy))						90	60	Yes
Stal	bility	/ (#	Err	ors/	run)					20	1	No
Foo	t Pri	int (Mb)								10	2	Yes

[NOTE: THESE GUIDELINES ARE REPRODUCED FROM EXERPTS OF, "GUIDANCE ON ELIGIBILITY OF SOFTWARE PROJECTS FOR THE SR&ED TAX CREDITS," AS PUBLISHED BY THE CRA IN CO-OPERATION WITH CATA & THE SOFTWARE INDUSTRY, SEPTEMBER 2000.]

Advancement - Note that an advancement in technology can rarely be described by listing software functions and features at an "end-user" level. Advances are typically made through innovation in software architectures, designs, algorithms, techniques or constructs within the field of information technology or computer science. The advancement need not be large.

Note: Simply claiming to have developed the first or best software suite for a given purpose does not in itself prove that the taxpayer has made a technological advancement. A new and unique software suite can be built using only well known combinations of constructs, tools and methods without technological advancement. This is analogous to designing and building a unique and complex office building without making any advancements in the field of civil engineering.

Evidence of Technological Advancement could include credible third party literature or comparisons of the capabilities sought against those previously available from the taxpayer himself. As in a court of law, there are no rigid definitions of what constitutes credible evidence.

Technology or Knowledge Base Level:

Benchmarking methods & sources for citings:

Benchmark Method/Source	Measurement	Explanatory notes
Internet searches	12 sites / articles	We searched extensively and found no out of the box solutions to meet our criteria
Patent searches	43 patents	We looked at 43 patents that were simlar to our requirements but were insufficient
Competitive products or processes	3 products	We looked at 3 other companies working with similar technologies
Potential components	7 products	There are seven potential components we are looking at using
Queries to experts	5 responses	We spoke to Derek Tarko P. eng He was helpful but advised us this wasn't available

Hint: As a means to identify the advancement(s), the taxpayer might identify the technological reason why his architecture or technique was not used before. How does it compare with earlier solutions or with the current solution of a competitor? What earlier technical constraint has been overcome?

Field of Science/Technology:

Software engineering and technology (2.02.09)

Project Details:

Intended Results:	Develop new processes, Develop new materials, devices, or products, Improve existing processes, Improve existing materials, devices, or products
Work locations:	Commercial Facility
Key Employees:	Bill Gates (Computers - B.Sc. (1981) / CEO), Steve Jobs (Software - B.Eng. (1983) / Project

Project Name:	Software SRED - General guidelines	Start Date:	2008-01-01
Project Number:	1100	Completion Date:	2008-12-31
	Manager), Sergery Brin (Unknown / Unknown)		
Evidence types:	Records of resources allocated to the project, time sheets; Desig laboratory notebooks; Design, system architecture and source c Progress reports, minutes of project meetings; Test protocols, te conclusions; Photographs and videos; Samples, prototypes, scra	In of experiments; Project ode; Records of trial runs st data, analysis of test re ap or other artefacts	t records, ; esults,

Scientific or Technological Advancement:

Uncertainty #1: Define variables for experimentation (OPTIMAL METHODS)

The objective here is to outline options for developing sets of questions which may act as catalyst to provide an effective and efficient method of identifying key evidence of eligibility.

1. Identify the limitations/constraints imposed by the technology components being utilized. What technical challenges did these constraints create?

2. Identify the degree of control the claimant has to modify the technology components. What technical challenges did these constraints create? Examples:

- Are you using any of the components in a unique, previously undocumented or unconventional fashion?

- Is the vendor able to confirm the suitability of these components for use in said fashion?

- Is the vendor capable of providing a deterministic description of the components predicted response when used in this unique fashion?

[NOTE: THE CRA FINDS THIS TYPE OF THIRD PARTY EVIDENCE VERY VALUABLE AS SUPPORTING EVIDENCE THAT THE WORK INVOLVED A "DEPARTURE FROM STANDARD PRACTICE." AS SUCH WE RECOMMEND THAT THIS EVIDENCE BE SAVED WHENEVER POSSIBLE.]

3. Identify the constraints or uncertainties or paradoxes presented when certain components/objects/technology platforms are operated in conjunction with other software entities. Do you have control over these interactions, can you or the vendors of these components predict the effects of these interactions?

4. Identify any constraints resulting from considerations of;

- Inter-operability
- Conformance to standards
- Performance (step response, throughput)
- Concurrency
- Footprint
- Scale-ability
- Stability
- 3rd party components
- legacy requirements

What technical challenges did these constraints create?

5. Identify any key characteristics of a technology platform you are using to which the manufacturer of the technology component cannot provide a fully deterministic characterization of the platform when utilized in the fashion required by your project.

6. Is the integrated performance of the software components incorporated within the project fully deterministic? I.E. can the behavior of the components be fully projected both on a stand alone basis as well as when operating within an integrated environment? Can you predict the desired outcome? If not why not?

7. What technology risks/constraints/problems appeared after the project began?

8. What was or will be hard or technically difficult to do & why?

9. What restrictions are presented by the attributes of objects/components or the API's presented by components on environmental platforms such as operating systems?

The most significant underlying key variables are:

Inter-operability methods - component selection (unresolved), Scalabity methods - memory vs. hard code (unresolved), Concurrency methods - single, dual, quad core (unresolved)

Activity #1-1: Eligible Activities (Fiscal Year 2011)

Meth	1ods o	of exp	erime	entatio	on:																										
	Μ	e	t	h	ο	d	Е	хр	е	r i	i	mε	n		t a	I	t	i	ο	n	P		e	r	f	ο	r	m	е	d	1
	Anal	ysis /	simul	ation:			2 al Wha	ternat at tech	ives nnica	ıl alt	er	native	s dia	ł١	/ou l	00	ok a	at.	wh	at di	d voi	JC	lisca	ard	&	wh	v?				
	Proc	ess tr	ials:				100	runs	/ san	nple	s			. ,				,									, -				
	Phys	sical p	prototy	/pes:			Des which exponents mos exis 3 sa	ign of ch all erime t influ tence	Exp relev nts a ence of ir s (wi	erin ant re a the thera th 1	fa Ina e ro act 0 r	nt invo ctors alyzec esults tions a revisio	olves are v , the , and ind s ns)	s c vai ey d t syi	lesig ried help hose nerg	gni sy o to e t jie:	ing /ste o ic that s b	a em der t d	set ation ntify lon wee	of te cally. opt ot, a en fa	en to Whe imal s we ctors	tw en co II a	venty the nditi as de	′ e res on eta	xpe sult s, t iils	erin s o he suc	1en If th fac ch a	its, i iese ctors as th	n tha ne	at	
							Whe exp usir che Unc suc are des trou Tec	en fac erime og pro ck out ertain cessfu carrie gn. W ble in hnolo	ed w nts totyp criti ties) ul arc d for /hen succ gical	rith ⁻ cal p cal p hite war this cinct Un	Te ode cti d t d t	e. Pro rforma code i ures a to the esign defini rtainti	totyp ance s oft nd c final met ng tl es -	al is er or ho	Unc cod sue aba nstru odolc Tec us q	er le s an uct bgy chi ua	is r or u ndo ts c y is nol	ntio not ne der s u og /in	es i t fu cer ed fo rive sec jica g th	many Ily fe tain i ollow d thr d thr d, the I Adv ne pr	y soft ature interf ing t ough clair ance oject	ed ac es n th ma	are o and es (ting ne w ant s ant s	is Teo for orl ho att	velo qui chr r th k w ould cem	ickl nolc e u rith I ha npte	rs o ogio nkr the ave ed a	desi ouilt t cal nowr e pro e little and	gn to ns, >tot € the	but ype	t ¥

An experiment within the context of the SR&ED Program involves setting up test conditions and making observations or measurements aimed at filling gaps in our technical knowledge. The result of the experiment, whether it is successful or unsuccessful, provides an increase in knowledge of software systems relative to the Technological Advancement sought and/or the Technological Uncertainties.

The new knowledge is applicable beyond the system under test. Thus inherently, Technological Uncertainties are associated with advancements in technology knowledge. One making a claim should always be able to identify the technological advancement in his knowledge that is associated with solving a technological uncertainty, i.e. what was learned through experimentation.

In software development, immediate problems are usually solved by "trial-and-error" rather than by experiment in the sense of the Income Tax Act. Trial-and-error involves executing a series of probes that were not sequenced in a systematic pre-plan. The objective here is to resolve a functional problem (as in routine debugging) rather than to gain understandings that are expected to be more widely applicable. The lesson learned in each iteration of "trial and error" is simply "that an option didn't work" and they are not applicable in a much broader sense. For each iteration the probe is chosen that is now judged to be the most efficient in resolving the immediate problem. The process proceeds quickly from iteration to iteration.

Resolving problems through the "trial-and-error" approach is eligible support work, but it is not the basis for a Technological Advancement, as the knowledge gained does not produce a true improvement in our understanding of the technologies.

In the context of software development and the legislation, experiments might be aimed at resolving design or architectural alternatives or systematically probing an inadequately specified interface. The experimental approach itself should be designed.

Results:

- Performance (step response, throughput): 2.5 seconds (83% of goal)
- CPU load: 50 % busy (133% of goal)
- Foot Print: 5 Mb (62% of goal)

As stated in IC97-1, "experimentation or analysis in a situation where there is technological uncertainty", is a strong indication of project eligibility. The claimant should strongly link the experimental work to the Technological Advancement sought and to the Technological Uncertainties declared in the technical description of his project. In this way, the claimant will show clearly that specific experimental work is aimed at resolving the Technological Uncertainty and thus constitutes an attempt at providing the Technological Advancement

Conclusion:

 Start Date:
 2008-01-01

 Completion Date:
 2008-12-31

[AUTHOR'S NOTE: THE IDEAL CONCLUSIONS WOULD BRIEFLY DETAIL HOW THE RESULTS COMPARED WITH INITIAL EXPECTATIONS AND OUTLINE ANY FURTHER CONCLUSIONS WHICH COULD AFFECT FUTURE DEVELOPMENTS OF THIS NATURE.]

Related issues to illustrate via research steps & conclusions:

If you had to do it again what would you do differently?

What are the technical design trade-offs associated with these alternatives?

What are/were the possible technical outcomes other than the results you are seeking?

Documentation:

Uploaded to RDBASE.NET: Technical documentation retained.docx (14.1KB)

Key Criteria Summary

1100 - Software Si	RED - General guidelines										
Benchmarks:	Internet searches: 12 sites / articles Patent searches: 43 patents Competitive products or processes: 3 products Potential components: 7 products Queries to experts: 5 responses	Objectives: Performance (step response, throughput): 2 seco CPU load: 60 % busy Stability : 1 # Errors/ run Foot Print: 2 Mb									
Uncertainty:	1 - Define variables for experimentation (OPTIMAL I	METHODS)	Key Variables:	Concurrency i Inter-operabili Scalabity met	methods - singl ty methods - co hods - memory	e, dual, quad core, imponent selection vs. hard code	I,				
1 - Eligible Activitie	Analysis / simulation: 2 alternatives Process trials: 100 runs / samples Physical prototypes: 3 samples prototype revisions: 10 revisions	Performance (step response, throughput): 2.5 seconds (83 %) CPU load: 50 % busy (133 %) Foot Print: 5 Mb (62 %)	(none)	155.50	99.00	124.00	2011				

1101 - Integrate SQL Database, X-n, & Internet Servers

Project Details:

Scientific or Technological Objectives:

Measureme	n t Current Per	formance Objecti	ve Has results?
Throughput (events/s)	1	20	Yes
query rate (bit/sec)	10	1	No
data accuracy (%)	80	100	No
Storage Capacity (MB)	100	1000	No

[NOTE: THIS EXAMPLE IS REPRODUCED FROM, "GUIDANCE ON ELIGIBILITY OF SOFTWARE PROJECTS FOR THE SR&ED TAX CREDITS," AS PUBLISHED BY THE CRA IN CO-OPERATION WITH CATA & THE SOFTWARE INDUSTRY.]

[NOTE - THIS IS AN EXAMPLE OF HOW THE EVIDENCE NECESSARY TO SUPPORT THE CLAIM TYPICALLY ARISES NATURALLY FROM THE STANDARD DOCUMENTATION AND WORK PRODUCTS OF A GIVEN SOFTWARE DEVELOPMENT EFFORT.]

[AUTHOR'S NOTE: IDEALLY THE TAXPAYER WOULD ATTEMPT TO QUANTIFY THE OBJECTIVES THEY ARE TRYING TO ACHIEVE. QUANTIFIABLE OBJECTIVES HAVE BEEN ADDED ABOVE TO ILLUSTRATE.]

A large container rental company is developing a custom, geographically distributed, transaction based, enterprise wide, operations, reservations, billing, and inventory yield management system. The new system will replace an ageing and simple UNIX terminal based main-frame reservation and contract recording system.

The nature of the problem appeared in the later half of the project as a result of unexpected interactions between the transaction server component technology and the SQL database technology. Within the given architecture the two components combined to constrain the manner and mechanisms related to the level of granularity at which the SQL database could undertake record locking within a given table(s). The end result was an unexpected and severe impairment with respect to both the concurrency and throughput as it pertained to the processing of transactions.

Technology or Knowledge Base Level:

Benchmarking methods & sources for citing	gs:	
Benchmark Method/Source	Measurement	Explanatory notes
Patent searches	3 patents	Nothing found
Similar prior in-house technologies	1 products / processes	Existing system is a simple UNIX terminal based main-frame reservation & contract recording system.
Potential components	3 products	We looked at 4 potential components
Queries to experts	2 responses	We spoke to 2 software engineers and there is no off the counter solution

The development team contacted the vendor of the components (which in this case was common to the Operating system, SQL database, Transaction server and Internet server software technology components) and requested assistance with the problem. The vendor investigated the problem and made several recommendations in an attempt to solve the problem, but was unable to direct the company to a solution to the problem.

None of the directives from the vendor were able to correct the system performance. In fact during the course of the investigation the vendor was unable to accurately predict the resulting system performance with respect to several of the suggestions they made.

[NOTE: THIS EXPLANATION OF STANDARD PRACTICE SHOULD ATTEMPT TO OUTLINE "READILY AVAILABLE INFORMATION" ON THE TOPIC CONSIDERED AND IDENTIFY THE BOUNDARIES OF "KNOWN" AND "UNKNOWN" VARIABLES. THESE IN TURN FORM THE BASIS OF THE "TECHNICAL UNCERTAINTIES". THIS INFORMATION IS USEFUL IN HELPING THE AUDITOR TO EVALUATE THE COMPANY'S "TECHNICAL QUALIFICATIONS" WITH RESPECT TO THE TECHNOLOGIES IN QUESTION.]

The independent consultants made the recommendation to develop rather than purchase a system as 3rd party solutions did not feature required functionality.

[EVIDENCE - PERTAINING TO THE STATE OF THE ART - IS THE REPORT EXAMINING THE SOLUTIONS AVAILABLE AND THE RECOMMENDATION TO MAKE VERSUS BUY.]

The claimant did not have the internal development expertise necessary to design and implement the new system, and consequently subcontracted a respected Canadian software development firm to undertake the project.

[EVIDENCE - RETENTION OF SUCH A DEVELOPMENT FIRM PROVIDES EVIDENCE OF ACCESS TO QUALIFIED PERSONNEL WHICH IN TURN RELATES DIRECTLY TO THE VALIDITY OF ADVANCEMENTS SOUGHT AND UNCERTAINTIES ENCOUNTERED.]

The new system architecture was implemented utilizing object oriented software technology components in an N Tier thin client configuration. The functional requirements with respect to transactional, reporting, and yield management processes for the system resulted in the requirement to support very complex transactions. This in turn required the implementation of a very large and complex database schema.

[NOTE: IDEALLY, WE WOULD TRY TO QUANTIFY THIS DATABASE ENVIRONMENT AND VARIABLES IN QUESTION].

Field of Science/Technology:

Software engineering and technology (2.02.09)

Project Details:

Intended Results:	Improve existing processes
Work locations:	Commercial Facility
Key Employees:	Bill Gates (Computers - B.Sc. (1981) / CEO), Steve Jobs (Software - B.Eng. (1983) / Project Manager), Sergery Brin (Unknown / Unknown)
Evidence types:	Test protocols, test data, analysis of test results, conclusions; Records of trial runs

Scientific or Technological Advancement:

Uncertainty #1: Database and Transaction Server Interaction

Extremely large data sets are usually quite complex, frequently containing scores of variables, many of which can only be described by non-linear relationships. Numerous variables may also interact with each other. These issues all combine to make many statistical procedures, such as Analysis of Variance or regression analysis, difficult to use. Care must also be taken such that data with many variables is not "over analyzed." Not matter how large the data set is originally, if it is cut into enough segments, significant differences will be found between groups simply by chance.

The most significant underlying key variables are:

Data handling method (conversion, number thread), Optimal data query method, Optimal database structure, Data normalization method, Data characteristic (type, size, etc)

Ac	t	i	V	i	t	у	#	1	- 1	: :	S	у	s t	е	m	I	m	0	de) I	i	n	g		(F	•	i	s	С	а	I		Y	е	а	r		2	0	1	1)
Methods of experimentation:																																											
		Μ		e	;	t		h	0) (d	Ε	Х	р	е	r	i	m	e	9	n	t	а	1	t	i		ο	I	n		Ρ	e	÷	r	f	C)	r	m) (е	d
	,	An	aly	/si	s /	sim	iula	tion	:			3 a Th Re sat the no yet	alter e u: gre mpl e ca t un t co	rnat se c ssic es (se) usu llec	ives of Pl on a pro whe ial to t inf	_S nd duo n a o p orn	mc Pri cts) atte res nat	odel inci tha mp ent	s el pal an v ting on on	im Co ari to y { a c	ina mj ab cc 3-1	ate: poi ples pm 0 p	s d ner s to par oro e de	ra nt l b re du oz	wt Rei co uct	oa egi incons s f	cł re clu su to	k c ess ud im th sc	of I sio ec er ne srip	bot on (d ir cc otiv	th (P(n th nd ons ve	Orc CR ne i de sum	dina). C no scr scr ier	ary)L: de ipt ar	≀L Sr I, \ ive nd s.	ea: eq whi e d de PC	st uir ch ata sc CR	Sq res a is a. I rip el	iua ty n f tiv	ires ore pic act e p ina	s (C all t, it an	DL y n t is els s th	.S) not s his

Project Name:	Integrate SQL	dbase, x-n, & internet servers	Start Date:	2008-01-01
Project Number:	1101		Completion Date:	2015-12-31
		difficulty, as well as the problem of multicollinearity the descriptive data. However, the first principal component descriptive data, is not necessarily related to consum weakening the model for predictive purposes. The us Cluster Mapping eliminates both of these difficulties. model to the data it remains possible to predict consu- from the existing model by simply running additional	hat is present in much of the ent, formed from the her acceptance thereby se of PLS through Preference Further, because it still fits a umer liking of new products descriptive panels.	•
Process trials:		100 runs / samples		
		[EVIDENCE OF THE TECHNOLOGICAL UNCERTA LOGS, TEST PROGRAMS, DEFECT TRACKING RE CORRESPONDENCE WITH VENDOR(S) RELATING	INTY - TEST PLANS, TEST ECORDS, EMAIL G TO THE PROBLEM.]	
		[EVIDENCE OF SYSTEMATIC EXPERIMENTATION PROGRAMS, TEST PLANS, TEST RESULTS, EMA ENTRIES.]	N - THE TEST PROTOTYPE ILS, & DEFECT TRACKING	
Physical protot	ypes:	3 samples (with 4 revisions)		
		The development teams continued to utilize a series experimentation to empirically characterize the behave gain further insight into the problem. Each of the 3 potential solutions was then implement which showed the most improvement was then further of experiments.	of prototypes and viour of the system in order to ted and tested. The solution er refined using another serie	D IS

Results:

• Throughput: 30 events/s (152% of goal)

The development team undertook a series of testing and corrective actions but was unable to isolate the root cause for the combined interaction behaviour of the database and transaction server technology components.

Conclusion:

Discovered that relational data models could be inefficient when used in the DMS in some circumstances.

[NOTE: THE IDEAL CONCLUSION WOULD ALSO BRIEFLY DETAIL HOW THESE RESULTS COMPARED WITH INITIAL EXPECTATIONS AND OUTLINE ANY FURTHER CONCLUSIONS WHICH COULD AFFECT FUTURE DEVELOPMENTS OF THIS NATURE.]

Significant variables addressed: Data characteristic (type, size, etc), Data handling method (conversion, number thread), Data normalization method, Optimal data query method, Optimal database structure

Documentation:

- Uploaded to RDBASE.NET: software examples core_issues summary.xls (25.5KB)
- Offline Documents: Server Interaction

Kou Criteria Summany								
Project Number:	1101	Completion Date:	2015-12-31					
Project Name:	Integrate SQL dbase, x-n, & internet servers	Start Date:	2008-01-01					

Key Criteria Summary Sample Software Industry

1101 - Integrate So	QL dbase, x-n, & internet servers									
Benchmarks:	Patent searches: 3 patents Similar prior in-house technologies: 1 products / Potential components: 3 products Queries to experts: 2 responses		Objectives:	Throughput: 20 events/s query rate: 1 bit/sec data accuracy : 100 % Storage Capacity : 1000 MB						
Uncertainty:	1 - Database and Transaction Server Interaction		Key Variables:	Data characteristic (type, size, etc), Data handling method (conversion, number thread), Data normalization method, Optimal data query method, Optimal dispases structure						
Activity	Testing Methods	Results - % of Objective	Variables Concluded	Hours	Materials \$	Subcontractor \$	Fiscal Year			
1 - System modeling	Analysis / simulation: 3 alternatives Process trials: 100 runs / samples Physical prototypes: 3 samples prototype revisions: 4 revisions	Throughput: 30 events/s (152 %)	Data characteristic (type, size, etc) Data handling method (conversion, number thread) Data normalization method Optimal data query method Optimal database structure	425.00	4,263.00	3.00	2011			

1102 – DBMS Project (Database Methodology)

Project Details:

Scientific or Technological Objectives:

Μ	е	а	S	u	r	е	m	е	n	t	Current Performance	Objective	Has results?
Incr	eas	e ac	ces	s sp	eed	d (s)				30	15	Yes
Incr	eas	e da	tab	ase	cap	acit	y (G	BB)			0.5	1	No

[NOTE: THIS PROJECT DESCRIPTION IS BASED ON THE CRA'S EXAMPLE OF AN ELIGIBLE PROJECT FROM THEIR SR&ED SOFTWARE DEVELOPMENT INDUSTRY GUIDELINES: INFORMATION CIRCULAR 97-1.]

The objective is to develop and implement a new data basing method in order to double the speed of the database currently achieved in Version 3.5 of our "property record management system."

Technology or Knowledge Base Level:

Benchmarking methods & sources for citings:

Benchmark Method/Source	Measurement	Explanatory notes
Internet searches	21 sites / articles	No results related to our query
Patent searches	14 patents	Searched Google patents
Similar prior in-house technologies	1 products / processes	Existing system has excessive access times (>30 seconds) with large databases (>1 gigabyte).

XYZ Co. has developed a proprietary DMS (database management system) as part of their PRMS (property record management system) product. The DMS works well with small data sets, but has excessive access times (>30 seconds) with large databases (>1 gigabyte).

[NOTE: THIS EXPLANATION OF STANDARD PRACTICE SHOULD ATTEMPT TO OUTLINE "READILY AVAILABLE INFORMATION" ON THE TOPIC CONSIDERED AND IDENTIFY THE BOUNDARIES OF "KNOWN" AND "UNKNOWN" VARIABLES. THESE IN TURN FORM THE BASIS OF THE "TECHNICAL UNCERTAINTIES". THIS INFORMATION IS USEFUL IN HELPING THE AUDITOR TO EVALUATE THE COMPANY'S "TECHNICAL QUALIFICATIONS" WITH RESPECT TO THE TECHNOLOGIES IN QUESTION.]

Field of Science/Technology:

Software engineering and technology (2.02.09)

Project Details:

Intended Results:	Develop new materials, devices, or products, Improve existing materials, devices, or products
Work locations:	Commercial Facility
Key Employees:	Bill Gates (Computers - B.Sc. (1981) / CEO), Steve Jobs (Software - B.Eng. (1983) / Project Manager), Sergery Brin (Unknown / Unknown)
Evidence types:	Test protocols, test data, analysis of test results, conclusions; Design of experiments; Records or trial runs

Scientific or Technological Advancement:

UI	n o	c e	ə r	t	а	i	n	t	У	#	1	:	0	р	t	i	m	а	1	d	а	t	а	m	0	d	е	1	
----	-----	-----	-----	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--

Extremely large data sets are usually quite complex, frequently containing scores of variables, many of which can only be described by non-linear relationships. Numerous variables may also interact with each other. These issues all combine to make many statistical procedures, such as Analysis of Variance or regression analysis, difficult to use. Care must also be taken such that data with many variables is not "over analyzed." No matter how large the data set is originally, if it is cut into enough segments, significant differences will be found between groups simply by chance.

Project Name:	DBMS Project (Database methodology)	Start Date:	2008-01-01
Project Number:	1102	Completion Date:	2015-06-30
		 1 1 1 1	

[AUTHORS NOTE]: Relational Data Model Analysis - We were unsure regarding the optimal synchronization of the various databases and the negative result that a rational data model, and various datatypes might have with DMS.

Comm model vs relational environment - We were uncertain how we will use a data model designed for data communications in a relational environment?

Relational Access + Packet Access Combination - How can we optimally combine relational and packet access against the same database to yield a minimum # of inefficiencies when processing tables in the DMS?

The most significant underlying key variables are:

Data model selection (relational, comm), Optimal query method (relational, packet), Data size/type, Data normalization method

nods of experimentation:	
Metho	dExperimentation Performed
Analysis / simulation:	4 alternatives
	Conducted a literature review of relational data models. As a result we looked at 4 alternate data models.
	Conducted 7 comprehensive benchmark tests to compare performance between the the models.
	[NOTE: IDEALLY, CLAIMANTS WOULD PROVIDE SPECIFIC DETAILS AS TO
	HOW THESE MODELS DIFFERED AND SOME OF THE MOST SIGNIFICANT
	PERFORMED FACH ACTIVITY SHOULD ATTEMPT TO CROSS-REFERENCE
	RELEVANT, TECHNICAL DOCUMENTATION INCLUDING: DOCUMENT NAME,
	DATE, # OF PAGES AND LOCATION.]
Process trials:	10 runs / samples
	We experimented to determine if an existing data communications model could be adapted to achieve processing efficiencies, at the expense of additional storage space.
Physical prototypes:	[NOTE: IDEALLY CLAIMANTS WOULD PROVIDE SPECIFIC DETAILS AS TO HOW THESE DATABASES DIFFERED AND WHY THIS WAS BELIEVED TO BE TECHNICALLY SIGNIFICANT. WE SHOULD ALSO ATTEMPT TO SUMMARIZE SOME OF THE MOST SIGNIFICANT VARIABLES EXAMINED.] 1 samples
	Experimentally employed a hybrid approach involving both relational and packet data management techniques. Created a prototype Data Model DMS with the intention of making it faster than existing one.

Results:

 Increase access speed : 10 s (133% of goal) -- Processing time for query and update capabilities were improved to <10 seconds for >1 GB databases.

Initial testing indicated that the new DMS was 75% faster than the existing DMS through use of the newly developed hybrid data access techniques.

Conclusion:

We determined that a data communications model could achieve processing inefficiencies. We discovered that relational data models could be inefficient when used in the DMS in some circumstances. While some of the tables could be processed more efficiently if they were in packet form, others were best managed through relational techniques.

[NOTE: THE IDEAL CONCLUSION WOULD ALSO BRIEFLY DETAIL HOW THESE RESULTS COMPARED WITH INITIAL EXPECTATIONS AND OUTLINE ANY FURTHER CONCLUSIONS WHICH COULD AFFECT FUTURE DEVELOPMENTS OF THIS NATURE.]

[NOTE: IDEALLY WE WOULD OUTLINE ADDITIONAL DETAILS SUCH AS "PROS AND CONS" DISCOVERED WITH RESPECT TO THIS METHOD - PARTICULARLY THOSE THAT WERE OTHERWISE UNEXPECTED.]

Significant variables addressed: Data model selection (relational, comm), Data normalization method, Data size/type, Optimal query method (relational, packet)

Documentation: @RDBASE 2014

Project Name:	DBMS Project (Database methodology)	Start Date:	2008-01-01			
Project Number:	1102	Completion Date:	2015-06-30			
Offline Documents: Test results						

Key Criteria Summary

1102 - DBMS Pro	ject (Databas	e methodology)									
Benchmarks:	Internet sear Patent searc Similar prior	ches: 21 sites / articles hes: 14 patents in-house technologies: 1 products /		Objectives:	: Increase access speed : 15 s Increase database capacity : 1 GB						
Uncertainty:	1 - Optimal d	ata model		Key Variables:	Data model so normalization method (relation	election (relation method, Data s ional, packet)	nal, comm), Data size/type, Optimal o	query			
Activity		Testing Methods	Results - % of Objective	Variables Concluded	Hours	Materials \$	Subcontractor \$	Fiscal Year			
1 - Data Communications Model Analysis		Analysis / simulation: 4 alternatives Process trials: 10 runs / samples Physical prototypes: 1 samples	Increase access speed : 10 s (133 %)	Data model selection (relational, comm) Data normalization method Data size/type Optimal query method (relational, packet)	600.00	0.00	2,500.00	2011			

1103 - Network Failure Problems

Project Details:

Scientific or Technological Objectives:

Measuremen	t Current Performance	Objective	Has results?
Concurrent accesses (# transactions)	760	1750	Yes
Reduce response time (seconds)	5	3	Yes
Network performance (# crashes/10 transactions)	1	0	Yes
Development costs (\$)	500	400	Yes

[THIS PROJECT IS BASED ON THE CRA'S EXAMPLE #3 FROM, "CROSS-SECTOR SHOP FLOOR GUIDANCE DOCUMENT" (JULY 29, 2002)]

[AUTHOR'S NOTE: IDEALLY THE TAXPAYER WOULD ATTEMPT TO QUANTIFY THE OBJECTIVES THEY ARE TRYING TO ACHIEVE. QUANTIFIABLE OBJECTIVES HAVE BEEN ADDED ABOVE TO ILLUSTRATE.]

The objective was to determine why the CallHome high-speed network does not meet the original design criteria, and to take correction such that the network will facilitate 500 high-speed access ports, with 1750 concurrent transactions, at a maximum 25% reduction in response time.

CallHome's technological advancement sought was the solution to the network failure. The network had been designed according to the current theory, and had failed to provide the theoretical performance. Once normal network troubleshooting proved ineffective, and did not solve the problems, CallHome realized more design work was required to determine the underlying problem with the technology. Solving this problem represented a technological advancement.

Technology or Knowledge Base Level:

Benchmarking methods & sources for citin	gs:	
Benchmark Method/Source	Measurement	Explanatory notes
Internet searches	12 sites / articles	Nothing matched our query
Patent searches	4 patents	Searched Google patents, we looked at 4 simlar products that didn't meet our specs
Similar prior in-house technologies	1 products / processes	Theoretical capacity was 1750 concurrent transactions, but system was crashing in practice.

A communications company, CallHome, designed and built a high-speed Internet access network to offer its clients. Three different vendors' equipment were involved in the implementation of the network, including the local telephone company equipment. The initial design was capable of 500 high-speed ports. Maximum theoretical network capacity was established as 1750 concurrent transactions, with a maximum 25% reduction in response time. After reviewing the overall network design, all the equipment vendors agreed that their equipment could operate in the target network architecture, and these numbers could be comfortably achieved.

After six months of operation, CallHome had sold 225 high-speed accesses, and the network management system was reporting utilization numbers of 700-800 concurrent accesses, with an 18% reduction in response rate. Although this reduction in response time raised concerns about network capacity, there were no customer complaints, and the vendors continued to stand by their position. CallHome then had a major marketing campaign that resulted in another 60 high-speed customers.

After their service was activated, the network began crashing for no apparent reason. The network management software could not pinpoint the problem, and the equipment vendors could offer no reasons for the failures. Customers began canceling their service.

Field of Science/Technology:

Computer hardware and architecture (2.02.08)

Project Number:	1103	Completion Date:	2012-04-30
Project Name:	Network Failure Problems	Start Date:	2009-01-01

Project Details:

Intended Results:	Improve existing materials, devices, or products
Work locations:	Commercial Facility
Key Employees:	Bill Gates (Computers - B.Sc. (1981) / CEO), Steve Jobs (Software - B.Eng. (1983) / Project Manager), Sergery Brin (Unknown / Unknown)
Evidence types:	Samples, prototypes, scrap or other artefacts; Design, system architecture and source code; Project records, laboratory notebooks; Project planning documents

. .

Scientific or Technological Advancement:

U	n	С	е	r	t	а	1	n	<u>ty</u>		#	1	:	S	У	S	t	е	m	<u> </u>	<u>)</u>	n	С	е	r	t	а	1	<u>n</u> 1	!]	/
[N	OTE:	V	VHIC	ЭН	VA	\RIA	۱BL	ES	ARE	ι	JNP	RED	ICT	\BLE	WI	TΗ	RE	SPE	ECT	TC) D	ΕT	ERI	MIN	ING	i T	ΉE	"(DPTI	MA	L
CC	ombi	NA'	10IT	V C	DF	CO	MP	ON	ENTS	;"?	THE	ESE	ISS	SUES	ARI	E (CRE	ATE	ED	ΒY	DEF	PAR	RTU	RES	SΓ	RO	М	ST/	AND.	AR	D
PF	RACT	ICE	S.]																												

-What method should be used to determine the cause of the network failure, given the network management software, the vendors, and all other network indicators are normal?

-The vendors would not provide detailed information on their firmware source code. Their equipment complies with network and protocol interface standards. Can we, and how do we, develop a test bed that will provide critical technical information necessary to identify the technical problems?

-Once the inconsistencies in networking address index caching were identified, it was technically uncertain how we could develop an interface that will compensate for the different index caching techniques, without compromising on response times.

The extent of system uncertainty of possible resolutions to problems is unknown. For instance, a possible solution may solve one component but may also cause the other components to fail. Therefore, it is possible that a solution cannot be developed to address the needs of all the components. For example, a software solution of Vendor A may not correctly interface with a specific piece of firmware from Vendor B and C.

The most significant underlying key variables are:

Optimal system protocol, Inter-operability/integration of components, Network architectural design vs various equipment, Index caching methods, Data normalization methods (unresolved)

Activity #1-1: Development and Testing (Fiscal Year 2011)

Methods of experimentation:																									
Metho	d	Е	хp) e	r	i	m	е	n	t	a	t	i	0	n	I	Ρ	е	r	f	0	r	m	е	d
Analysis / simulation:		4 a	alterna	atives	6																				
Process trials:		4 a in dis 32	archite a com parat runs	ectura plete e dat / san	al c ely a r npl	desi nev norn es	gns / apj naliz	exp oro atio	berir ach on.	ne tha	ntal at ir	ly e ivo	eva lve	aluat ed de	ed. evel	All de oping	esi ne	gns ew 1	fai tec	iled hni	l, w qu	/hicl es f	n res or	sult	ed
		[AI CF TC BE	JTHC RA'S E ILLU INCI	R'S XAN ISTR UDE	NC IPI AT	DTE LE. TE S .]	: TH The Som	E D D E C	DES ATA DF T	CF A THE	ript .Bo` E Ai	ΓΙΟ VE DD	NS (# ITI	6 BE TRI ON/	LOV ALS	N WE S/ALT DETA	Er Ef Ils	E P RNA S TI	RC ATI HA	OVI VE T V	DE S) VO	ED II IS F ULC	n th Pro D Id	HE VIC EAI	DED LLY
		[N UN	OTE: IEXPI	TRY ECTE	TC ED	D CI	_AR TER-	IFY RE	í va Elat	RI. Fic	ABL DNS	_ES 5.]	3 II	N QI	JES	TION	I A	ND	IL	LU	ST	RA	TE A	NY	,
		En pre us	ginee elimin er cor	rs ar ary c nmui	nd o ono nity	othe clus / de	er teo ions man	chn Ieo ds	ical d us 760	sta to co	aff s spe once	stuc ecu urre	die Ilat ent	d an e tha trar	d ai at th isac	nalyze ie pro itions.	ed oble	the em	pr ha	obl ppe	em	n. O s wh	ur en t	he	
		Cc sy: ma ve	nduct stem i anage ndor /	ed a mana ment A and	nu age i sy i ve	umb eme /ste end	er [ŀ nt ra m w or B	IO\ w c as eq	N N data not uipr	IAN . F pro	NY? From opei nt.] of ו th rly ו	f di ie a rep	ffere analy ortir	ent e /sis ng o	experi we d n the	ime ete in	ents erm terf	s o ine ace	n th ed t e co	ne ha onc	netv t the ditio	vork net	wo etw	rk /een
		De too oth	velop ols to ner. A	ed a look a nalys	nd at I	buil how of ir	t a r the nple	um eq me	nber uipr entin	[H nei g t	IOV nt fr	/ M om tool	IAN Ve I re	NY?] endo evea	of o or A led	differe and E that t	ent 3 v he	ne vere two	two e ir	ork nter end	ma act	anag ting s we	gem with ere u	ent i ea isin	ich Ig

roject Name:	Network Failu	ure Problems	Start Date:	2009-01-01
roject Number:	1103		Completion Date:	2012-04-30
		slightly different network address caching methods.		
		Three different units from each vendor were tested, crashed network in our test bed simulations.	all with the same results of a	à
		Both vendors refused us access to their firmware so was no problem with their equipment. They stated th to OSI network and protocol interface standards, so was not necessary.	purce code, and reported the nat their equipment conforme that access to the source co	re ed ode
Physical proto	types:	We began to research different techniques for integrequipment without the performance reduction we we network. 1 samples (with 10 revisions)	rating the different vendor ere experiencing in our curre	nt
		We built a prototype interface unit and evaluated it in tools to look at equipment interaction, 3 units from e made 10 modifications on network management sys	n our test bed. We develope ach of 2 vendors tested. We stem.	d 7

Results:

- Concurrent accesses: 1900 # transactions (115% of goal)
- Reduce response time: 4.1 seconds (45% of goal)
- Network performance : 0 # crashes/10 transactions (100% of goal)
- Development costs: 450 \$ (50% of goal)

CallHome developed a new set of integration firmware that not only resolved the original firmware disparities, it introduced new techniques for networking index caching that theoretically pushed the CallHome network capability to 1900 concurrent access requests, with an 18% reduction in response time. Also, the company attempted to develop system integration techniques, which unfortunately failed because they did not improve reliability.

Conclusion:

CallHome learned that the different vendor's equipment used different techniques for indexing and routing of network addresses. A simpler model makes the identification and creation of an "ideal" product much more direct as fewer variables need to be examined for their effect on consumer acceptance. Development costs are also lowered as descriptive panels only need to collect information on a handful of attributes for use in predicting consumer acceptance of these new products.

[NOTE: IDEALLY, WE NEED COMPARISONS TO INITIAL EXPECTATIONS & TO CONCLUDE ON THE UNCERTAINTIES STATED: I.E. WHAT IF ANY ARCHITECTURES WOULD ACCOMPLISH THE COMPRESSION OBJECTIVES AND WHY? IT IS THE HYPOTHESES OR CONCLUSIONS TO EXPLAIN THESE RESULTS, RATHER THAN THE RESULTS THEMSELVES, WHICH THE CCRA WISHES TO SEE EVIDENCE OF.]

Significant variables addressed: Index caching methods, Inter-operability/integration of components, Network architectural design vs various equipment, Optimal system protocol

Documentation:

Offline Documents: Network Setup

Key Criteria Summary

1103 - Network fa	ilure problems										
Benchmarks:	Internet search Patent search Similar prior in	hes: 12 sites / articles ies: 4 patents n-house technologies: 1 products /		Objectives:	 concurrent accesses: 1750 # transactions Reduce response time: 3 seconds Network performance : 0 # crashes/10 transactions Development costs: 400 \$ 						
Uncertainty:	1 - System Ur	ncertainty		Key Variables:	Data normalia methods, Inte Network arch Optimal syste	zation methods er-operability/int itectural design em protocol	, Index caching egration of compor vs various equipm	nents, nent,			
Activity		Testing Methods	Results - % of Objective	Variables Concluded	Hours	Materials \$	Subcontractor \$	Fiscal Year			
1 - Development an	d Testing	Analysis / simulation: 4 alternatives Process trials: 32 runs / samples Physical prototypes: 1 samples prototype revisions: 10 revisions	Concurrent accesses: 1900 # transactions (115 %) Development costs: 450 \$ (50 %) Reduce response time: 4.1 seconds (45 %) Network performance : 0 # crashes/10 transactions (100 %)	Index caching methods Inter-operability/integr ation of components Network architectural design vs various equipment Optimal system protocol	159.25	8.00	66.00	2011			

1104 - Compression Algorithm

Project Details:

Scientific or Technological Objectives:

Measurement	Current Performance	Objective	Has results?
Compressed size of 1 MB map (KB)	90	30	Yes
Minimize data loss (%)	3	1.9	Yes
Minimize CPU load (% busy)	35	30	Yes
Maintain quality (peak signal-to-noise ratio) (dB)	30	30	Yes

[THIS EXAMPLE IS REPRODUCED FROM "GUIDANCE ON ELIGIBILITY OF SOFTWARE PROJECTS FOR THE SR&ED TAX CREDITS," AS PUBLISHED BY THE CRA IN CO-OPERATION WITH CATA & THE SOFTWARE INDUSTRY.]

The objective was to develop a new compression tool for GIS information with the capability of compressing a 1 meg map down to 30K. This has to be accomplished with less than 2% data loss.

Our product is very similar to that of ABC-IT Inc, however due to limited memory and battery life only limited size maps could be loaded, and a limited number of notes could be attached. Our competitor has released their software with a 50% further decrease in their compressed maps, i.e. they can compress a 1 meg. map to less than 40K. Our current best compression is to get a 1 meg image down to 90K. In order to maintain market share we must at least meet their performance, and develop a new compression technique. Our eventual goal is to be down to 30K.

Technology or Knowledge Base Level:

Benchmarking methods & sources for citings:

Benchmark Method/Source	Measurement	Explanatory notes
Internet searches	5 sites / articles	Found 5 website that had 13 articles, nothing matched our criteria
Patent searches	3 patents	Searched Google patents
Competitive products or processes	1 products	Competitor can compress 1Mb map to <40K.
Similar prior in-house technologies	1 products / processes	Our current product can compress 1Mb to 90K.
Potential components	4 products	We looked at 4 potential components
Queries to experts	2 responses	We spoke to 2 software engineers and there is no readily available solution

In September of last year our competitor ABC-IT Inc. released a new tool suite for the compression and modification of electronic maps and overlays. The tools are designed for use on mobile platforms. They allow the user to make notes, and modify the electronic maps as they are doing field work. They can then upload the changes to their desktop PC, back at the office, where a full GIS package resides.

Field of Science/Technology:

Software engineering and technology (2.02.09)

Project Details:

Intended Results:	Develop new materials, devices, or products
Work locations:	Commercial Facility
Key Employees:	Bill Gates (Computers - B.Sc. (1981) / CEO), Steve Jobs (Software - B.Eng. (1983) / Project Manager), Sergery Brin (Unknown / Unknown)
Evidence types:	Test protocols, test data, analysis of test results, conclusions; Project records, laboratory notebooks; Design of experiments

Project Name:	Compression algorithm	Start Date:	2009-01-01
Project Number:	1104	Completion Date:	2015-04-30
Scientific or Tee	chnological Advancement:		

Uncertaint	y #1:0	ptimal	compres	ssion	method
------------	--------	--------	---------	-------	--------

Optimal compression method(s). Specifically, what, if any, architectures would accomplish this compression objective?

The most significant underlying key variables are:

Compression architecture, Scalability method, Image characteristics (maps, overlays)

Activity #1-2: Development and Testing (Fiscal Year 2011)

Metho	ods of	expe	erime	ntatic	on:																									
	Μ	е	t	h	ο	d	Е	Х	р	е	r	i	m	е	n	t	а	t	i	ο	n	Ρ	е	r	f	ο	r	m	е	d
	Physi	cal pr	ototy	pes:			4 s	am	ples	3																				

[AUTHOR'S NOTE: THE DESCRIPTIONS BELOW WERE PROVIDED IN THE CRA'S EXAMPLE. THE DATA ABOVE (# TRIALS/ALTERNATIVES) IS PROVIDED TO ILLUSTRATE SOME OF THE ADDITIONAL DETAILS THAT WOULD IDEALLY BE INCLUDED.]

Through development and experimentation with several approaches [AUTHOR'S NOTE: IDEALLY THE DESCRIPTION WOULD DETAIL HOW MANY PROTOTYPE VARIATIONS DID WE ATTEMPT? I.E. 5, 50, 500? WERE THEY ALL SIMILAR OR COMPLETELY DIFFERENT? IF DIFFERENT, HOW SO AND WHY?], we managed to develop a compression tool using a data communication standard (X2 standard for hardware compression), and a method of analyzing the maps and overlays, synchronizing them into a single image and then using a modified version of MPEG 3 compression.

The modified software compression allows for easier separation of the map from the overlay once the data is transferred from the hand held unit to the desktop PC.

[NOTE: THIS DESCRIPTION IS STILL FAIRLY WEAK IN THAT THE "ACTIVITIES" & "CONCLUSIONS" ARE CURRENTLY BASED TOO HEAVILY ON A "GOALS - RESULTS" ORIENTATION RATHER THAN ILLUSTRATING WHY IT WAS SO HARD TO GET TO THE FINAL SOLUTION AND THEN IDENTIFYING RELEVANT "TECHNICAL CONCLUSIONS."]

Results:

- Compressed size of 1 MB map: 30 KB (100% of goal)
- Minimize data loss: 1.8 % (109% of goal)
- Minimize CPU load: 32 % busy (60% of goal)
- Maintain quality (peak signal-to-noise ratio): 30 dB (100% of goal)

The main issues were obtaining sufficient compression and allowing separation of the map and overlays.

Conclusion:

ELIGIBLE AS WRITTEN:

According to the CRA, "Generally, this Advancement WOULD QUALIFY, BUT it would NOT qualify in either of the following two situations."

[INELIGIBLE IF:]

1. While doing the preliminary technical feasibility work we discovered a company in the US that has a tool ideally suited for our needs. We are currently working out a licensing agreement for resale. With a couple of parameter changes, their tool will give us our target compression.

[RATIONALE: A ROUTINE SOLUTION WAS FOUND AND IMPLEMENTED WITHOUT SYSTEM UNCERTAINTY WITH RESPECT TO THE OPTIMAL METHOD(S) OF INTEGRATION.]

OR,

2. In the early part of the technical feasibility study portion of the project, we learned that one of the senior software engineers had resigned from ABC-IT Inc. We hired him and he is redeveloping their algorithm for our application. We have decided that matching the ABC-IT Inc. performance will be adequate.

[RATIONALE: THOUGH THE DEVELOPMENT MAY HAVE BEEN ELIGIBLE FOR THE COMPANY, HIRING THE NEW EMPLOYEE IMMEDIATELY EXPANDED ITS "STANDARD PRACTICE KNOWLEDGE BASE" TO INCLUDE THIS EMPLOYEE'S KNOWLEDGE. SINCE THE SOLUTION COULD BE DEVELOPED BY HIM WITHOUT ANY FURTHER

"TECHNOLOGICAL UNCERTAINTY" IT DOES NOT REPRESENT AN ELIGIBLE EXPERIMENTAL DEVELOPMENT ACTIVITY.]

[NOTE: IDEALLY, WE NEED COMPARISONS TO INITIAL EXPECTATIONS & TO CONCLUDE ON THE UNCERTAINTIES STATED: I.E. WHAT IF ANY ARCHITECTURES WOULD ACCOMPLISH THE COMPRESSION OBJECTIVES AND WHY? IT IS THE HYPOTHESES OR CONCLUSIONS TO EXPLAIN THESE RESULTS, RATHER THAN THE RESULTS THEMSELVES, WHICH THE CRA WISHES TO SEE EVIDENCE OF.]

Significant variables addressed: Compression architecture, Image characteristics (maps, overlays), Scalability method **Documentation:**

• Offline Documents: Test results

Key Criteria Summary

1104 - Compress	ion algorithm							
Benchmarks:	Internet sear Patent searc Competitive Similar prior Potential con Queries to en	ches: 5 sites / articles hes: 3 patents products or processes: 1 products in-house technologies: 1 products / mponents: 4 products xperts: 2 responses		Objectives:	Compressed : Minimize data Minimize CPU Maintain quali	size of 1 MB m loss: 1.9 % l load: 30 % bu ty (peak signal	ap: 30 KB sy -to-noise ratio): 30	dB
Uncertainty:	1 - Optimal c	compression method		Key Variables:	Compression (maps, overla	architecture, In ys), Scalability	nage characteristic method	s
Activity		Testing Methods	Results - % of Objective	Variables Concluded	Hours	Materials \$	Subcontractor \$	Fiscal Year
2 - Development ar	nd Testing	Physical prototypes: 4 samples	Compressed size of 1 MB map: 30 KB (100 %) Minimize data loss: 1.8 % (109 %) Minimize CPU load: 32 % busy (60 %) Maintain quality (peak signal-to-noise ratio): 30 dB (100 %)	Compression architecture Image characteristics (maps, overlays) Scalability method	81.25	2,000.00	5,000.00	2011

1105 – Scaling vs. Speed vs. Compression

Project Details:

Scientific or Technological Objectives:

Measurem	e n	t Current	Performance	Objective	Has results?
Encoding rate (s/GB)		20		5	Yes
File compression ratio (:1)		2		3	Yes
Maximum size (GB)		100		200	Yes

[THIS EXAMPLE IS REPRODUCED FROM "GUIDANCE ON ELIGIBILITY OF SOFTWARE PROJECTS FOR THE SR&ED TAX CREDITS," AS PUBLISHED BY THE CRA IN CO-OPERATION WITH CATA & THE SOFTWARE INDUSTRY.]

[AUTHOR'S NOTE: IDEALLY THE TAXPAYER WOULD ATTEMPT TO QUANTIFY THE OBJECTIVES THEY ARE TRYING TO ACHIEVE. A QUANTIFIABLE OBJECTIVE HAS BEEN ADDED ABOVE, TO ILLUSTRATE.]

We seek to show through analysis that the key to both graceful scaling to higher speed platforms and speed maximization for a specified compression on a Pentium performing "Framis" coding is the optimal use of the Pentium look ahead.

We also want to analytically determine the compression expected as a function of the number of bytes processed in parallel and to thereby determine the speed/compression trade-off.

Technology or Knowledge Base Level:

Benchmark Method/Source	Measurement	Explanatory notes
Competitive products or processes	1 products	Competitor capable of encoding a gigabyte in seven seconds on a 400 Mhz Pentium III
Potential components	7 products	There are seven potential components we are looking at using

In September of last year our competitor, MedsInc, announced its Framis encoding software capable of encoding a gigabyte in seven seconds on a 400 Mhz Pentium III processor.

[NOTE: AN IDEAL DESCRIPTION WOULD ALSO OUTLINE WHAT METHODS WERE "PUBLIC" VS. "PROPRIETARY INFORMATION" SINCE THE RESEARCHER IS EXPECTED TO TAKE NOTE OF "READILY AVAILABLE INFORMATION" BUT IS NOT EXPECTED TO KNOW "INFORMATION PROPRIETARY TO A COMPETITOR OR KNOWN IN ONLY SPECIALIST OR ACADEMIC CIRCLES."]

Field of Science/Technology:

Software engineering and technology (2.02.09)

Project Details:

Intended Results:	Improve existing processes, Improve existing materials, devices, or products
Work locations:	Commercial Facility
Key Employees:	Bill Gates (Computers - B.Sc. (1981) / CEO), Steve Jobs (Software - B.Eng. (1983) / Project Manager), Sergery Brin (Unknown / Unknown)
Evidence types:	Samples, prototypes, scrap or other artefacts; Design, system architecture and source code; Project planning documents

Scientific or Technological Advancement:

Uncertainty #1: Determining optimal trade-off

Project Name:	Scaling vs. Speed vs. Compression	Start Date:	2008-06-01
Project Number:	1105	Completion Date:	2015-03-31

The challenge is analyzing and determining the optimal trade-off between scaling, speed and compression on several computing platforms.

[NOTE: IDEALLY WE WOULD CLARIFY WHICH VARIABLES ARE UNPREDICTABLE WITH RESPECT TO DETERMINING THE "OPTIMAL COMBINATION OF COMPONENTS"? THESE ISSUES ARE CREATED BY DEPARTURES FROM STANDARD PRACTICES.]

The most significant underlying key variables are:

Scaling method, Compression method, Computing platform

Act	iv	ity	#	1 -	2:	Εn	С	0	d i	n	g	а	Ιg	0	r i	t	h I	m	(F	i s	С	al		Y	e a	a r		20	1 (1)
Method	ls of	expe	rime	ntatio	on:																											
Ν	N	е	t	h	ο	d	Ε	X	р	е	r	i	m	е	n	t	а	t	i	ο	n		Ρ	е	r	f	0	r	m) e	е	d
F	Proce	ess tria	als:				52	rur	ns /	sam	nple	es																				
_							8 to cor pla	est np tfo	s or ress rms	i ea sion,	ch (, fol	of 4 Ilow	plat ed b	tforr by te	ns f estii	to c ng i	lete of n	erm new	ine alç	tra gori	de-o thm	off k by	betw 5 s	/eei amj	n so bles	cali 3 or	ing, n ea	sp ach	eed of f	i & the	4	

[AUTHOR'S NOTE: THE DESCRIPTIONS BELOW WERE PROVIDED IN THE CRA'S EXAMPLE. THE DATA ABOVE (# TRIALS/ALTERNATIVES) IS PROVIDED TO ILLUSTRATE SOME OF THE ADDITIONAL DETAILS THAT WOULD IDEALLY BE INCLUDED.]

During the project the company used a combination of routine methods to analyze the trade-off between scaling, speed and compression on several computing platforms.

[NOTE: THE OPTIMAL DESCRIPTION WOULD DETAIL HOW MANY PROTOTYPE VARIATIONS ATTEMPTED (5?, 50?, 500?) AND SIGNIFICANCE OF ANY DIFFERENCES]

Next we performed testing to determine whether or not the new encoding algorithm consistently met its target of being able to code a gigabyte in five seconds. This involved the testing of performance against several gigabyte samples and the writing of a report that described performance as a function of the properties of the specific data samples. [HOW MANY TESTS PERFORMED?]

[NOTE: TRY TO CLARIFY VARIABLES IN QUESTION AND ILLUSTRATE ANY UNEXPECTED INTER-RELATIONS.] Results:

- Encoding rate: 5 s/GB (100% of goal)
- File compression ratio: 2.5 :1 (50% of goal)
- Maximum size: 110 GB (10% of goal)

We were able to achieve our speed goals but not compression or scalability objectives

Conclusion:

[NOTE - THE IDEAL SOLUTION WOULD COMPARE RESULTS TO INITIAL EXPECTATIONS AND TRY TO PROVIDE ADDITIONAL TECHNICAL EXPLANATIONS WITH RESPECT TO THE STATE UNCERTAINTIES: OPTIMAL TRADE-OFF BETWEEN SCALING, SPEED AND COMPRESSION ON SEVERAL COMPUTING PLATFORMS.]

ELIGIBLE ACTIVITIES CUT-OFF:

In the CRA's view the company showed that the new Framis had to be interfaced to an existing data input system and that a new graphical user interface had to be developed to determine ?whether or not the new Framis would scale to higher speed platforms more gracefully" and therefore the costs of the supporting activities, although routine in themselves, are eligible.

The project ends when the Framis software is sufficiently debugged and sufficiently featured that it codes a gigabyte in less than five seconds on a 400 MHz Pentium III and it can be shown that it scales to at least a couple platforms with clocks in excess of 400 MHz in a manner which is more "graceful" than was possible with the competitor's algorithm.

[NOTE: THIS POINT CAN BE EXTENDED IF THE COMPANY CAN EXPAND THE SCOPE OF THE TECHNICAL OBJECTIVE].

Significant variables addressed: Compression method, Computing platform, Scaling method

Documentation:

• Offline Documents: Algorithm

Project Name:	Scaling vs. Speed vs. Compression
Project Number:	1105

Key Criteria Summary Sample Software Industry

enchmarks:	Competitive produ	cts or processes: 1 products		Objectives:	Encoding rate: 5 s/GB								
	Potential compone	nts: / products			Maximum size	e: 200 GB							
Uncertainty:	1 - Determining op	timal trade-off		Key Variables:	Compression method	method, Compu	iting platform, Sca	ling					
Activity	Te	sting Methods	Results - % of Objective	Variables Concluded	Hours	Materials \$	Subcontractor \$	Fiscal Year					
2 - Encoding algor	ithm Pro	ocess trials: 52 runs / samples	File compression ratio: 2.5 :1	Scaling method	150.00	500.00	2,500.00	2011					
			Maximum size: 110 GB (10	Computing platform									
			%)	Comparing plauorin									
			Encoding rate: 5 s/GB (100										

1106 – Software Data Warehouse Development

Project Details:

Scientific or Technological Objectives:

Μ	е	а	s	u	r	е	m	е	n	t	Current Performance	Objective	Has results?
CPL	J Ut	iliza	tion	(%	bus	y)					95	70	Yes
Res	pon	ise ⁻	Time	e (se	ecor	nds)					60	15	Yes
Data	a to	con	npre	ssic	on (:	1 ra	tio)				5	15	Yes

[NOTE: THIS EXAMPLE IS REPRODUCED FROM, "GUIDANCE ON ELIGIBILITY OF SOFTWARE PROJECTS FOR THE SR&ED TAX CREDITS," AS PUBLISHED BY THE CRA IN CO-OPERATION WITH CATA & THE SOFTWARE INDUSTRY.]

[AUTHOR'S NOTE: IDEALLY THE TAXPAYER WOULD ATTEMPT TO QUANTIFY THE OBJECTIVES THEY ARE TRYING TO ACHIEVE. QUANTIFIABLE OBJECTIVES HAVE BEEN ADDED ABOVE TO ILLUSTRATE.]

Technology or Knowledge Base Level:

Benchmarking methods & sources for citir	igs:	
Benchmark Method/Source	Measurement	Explanatory notes
Internet searches	33 sites / articles	33 sites & 14 resulting artciles reviewed
Patent searches	4 patents	Searched Google patents, we looked at 4 simlar products that didn't meet our specs
Competitive products or processes	6 products	no methods to characterize non-uniform, dynamic data
Similar prior in-house technologies	2 products / processes	Benchmarks for CPU utilization
Potential components	100 products	over 100 potential components reviewed (open source & proprietary)
Queries to experts	3 responses	Queries to experts: 3 responses no methods to characterize non-uniform, dynamic data

Field of Science/Technology:

Computer hardware and architecture (2.02.08)

Project Details:

Intended Results:	Improve existing processes
Work locations:	Commercial Facility
Key Employees:	Bill Gates (Computers - B.Sc. (1981) / CEO), Steve Jobs (Software - B.Eng. (1983) / Project Manager), Sergery Brin (Unknown / Unknown)
Evidence types:	Records of resources allocated to the project, time sheets; Samples, prototypes, scrap or other artefacts; Design of experiments; Project planning documents; Project records, laboratory notebooks; Records of trial runs; Contracts

Scientific or Technological Advancement:

Uncertainty #1: Non-uniform dataset determination

We are uncertain as to how and whether it is possible to develop a method to identify and exploit the unique properties of non-uniform data sets. We are also uncertain whether we can use compressed data blocks vs entire tables to traverse the database and how much of a performance improvement this will result in.

The most significant underlying key variables are:

Definition and construction of data blocks, Methods to characterize non-uniform data, Definition of construction of data blocks, Data compression method, Data normalization method

Activity #1-1: Develop generic data model (Fiscal Year 2011)

Methods of experimentation:	
Metho	Experimentation Performed
Analysis / simulation:	10 alternatives Identified most common frequency values & evaluated use of column value frequencies to create prototype compression dictionary - using a relational dbase environment

Results:

No results have been recorded for this Activity.

At the end of this first phase we found that a reasonably accurate data set model could be created. This was further tested and the data set model accuracy was verified and validated against several concrete smaller-sized relational databases available to us in the data warehouse.

Conclusion:

Model proved feasible - developed table-wide list of most frequent values for compression dictionary

Significant variables addressed: Definition and construction of data blocks

Documentation:

Offline Documents: CRA Software Guidelines

Activity #1-2: Develop compression methods (Fiscal Year 2011)

Methods of experimentation:																									
Metho	d	Е	Х	р	е	r	i	m	е	n	t	а	t	i	ο	n	Ρ	е	r	f	ο	r	m	е	d
Physical prototypes:		10 De for	sar velo op	mple ope erat s by	es d te ion: / ro	est : s ir w.	scri nclu	ipts Iding	to c g: pa	om aral	par lel l	ed (loac	CPI I, d	U u elet	tiliz :e/u	ation, pdate	integ ope	grity ratio	an	d d , ful	lata II ta	thr ble	ougl sca	hpu In &	t

Results:

No results have been recorded for this Activity.

Conclusion:

We determined it is best to restrict query/refresh options to compressed blocks vs. entire tables

Significant variables addressed: Definition of construction of data blocks

Documentation:

• Offline Documents: Compression algorithm

Activity #1-3: Compression algorithm with dynamic techniques (Fiscal Year 2011)

Methods of experimentation:

Μ	e	t	h	ο	d	Ε	х	р	е	r	i	m	е	n	t	а	t	i	ο	n	Ρ	е	r	f	ο	r	m	е	d
Phys	sical p	rototy	/pes:			3 :	sam	ples	s (w	ith	12	revi	sior	ıs)															
						Ex	ami	ned	l us	e o	fb	uffer	cad	che	to d	orga	aniz	ze 8	& co	ontrol	com	ores	ssic	on c	licti	ona	ries	wh	en
						са	lls n	nad	e to	un	ю	mpre	ess	mul	tipl	e bl	locł	ks											

Results:

- CPU Utilization: 66 % busy (116% of goal)
- Response Time: 22 seconds (84% of goal)
- Data to compression: 131 :1 ratio (1260% of goal)

In August 2008, a final prototype was selected for widespread commercial implementation ending this aspect of the experimental development.

Conclusion:

This development lead to the discovery that we could use the column value frequency of initial tables rows to create an effective block-based compression dictionary.

Significant variables addressed: Data normalization method, Definition and construction of data blocks, Definition of construction of data blocks

Documentation:

• Offline Documents: x

Activity #1-4: Extend data compression methods (Fiscal Year 2011)

Meth	ods o	fexpe	erime	entatio	on:																									
	Μ	e	t	h	ο	d	Ε	х	р	е	r	i	m	е	n	t	а	t	i	ο	n	Ρ	е	r	f	ο	r	m	е	d
	Proc	ess tri	als:				10	2 ru	ins /	/ sa	mp	les																		
							Us pro	ed tot	exte ype	erna for	al co dat	ons ta k	ulta back	nt - up a	exp and	olor rec	atic	on ii əry	nto ope	us erat	e of t ions	he im	pler	ner	ntec	d co	mp	ress	sion	

Results:

No results have been recorded for this Activity.

As the result of this work it was found out and further documented that the prototype provided measurable performance improvements [QUANTIFY] when applied to very large databases in excess of 2.5 million rows (1.3 GB) such as those typically encountered in data warehouses.

Conclusion:

Success attributed primarily to compression dictionary vs. data blocks

Significant variables addressed: Data compression method, Definition and construction of data blocks

Documentation:

Offline Documents: Results

Activity #1-5: Correlate compression block size with initial data set (Fiscal Year 2011)

Μ	e	e	t	h	ο	d	Ε	х	р	е	r	i	m	е	n	t	а	t	i	ο	n	Ρ	е	r	f	ο	r	m	е
Anal	ysi	is / s	simul	ation:			22 th	alte e in	erna nple	tive me	es ente	d p	roto	otyp	e wa	as u	useo	d to	de	terr	nine v	wheth	her	or r	not	an	opt	imal	da
							tab	le o	com	pre	ssi	on-	bloo	k si	ze o	cou	ld b	e d	ete	rmi	ned b	y bo	th th	ne ii	nitia	al d	ata	set	

Results:

No results have been recorded for this Activity.

Conclusion:

Could NOT correlate compression block size w initial data set & dynamic analysis

Significant variables addressed: Definition and construction of data blocks, Definition of construction of data blocks, Methods to characterize non-uniform data

Documentation:

Offline Documents: Contract

Project	Name:
Project	Number:

MS .NET Development Issues 1107

Start Date: 2011-02-01 **Completion Date:** 2015-08-31

Key Criteria Summary

1106 - Software [Data Warehou	use Development						
Benchmarks:	Internet sean Patent sean Competitive Similar prior Potential co Queries to e	rches: 33 sites / articles ches: 4 patents products or processes: 6 products in-house technologies: 2 products / mponents: 100 products experts: 3 responses		Objectives:	CPU Utilizatio Response Tin Data to comp	on: 70 % busy ne: 15 seconds ression: 15 :1 n	atio	
Uncertainty:	1 - Non-uni	form dataset determination		Key Variables:	Data compres method, Defin Definition of c	ssion method, E nition and const construction of c	Data normalization ruction of data blo data blocks, Metho	cks, dsto
Activity		Testing Methods	Results - % of Objective	Variables Concluded	Hours	Materials \$	Subcontractor \$	Fiscal Year
1 - Develop generic	e data model	Analysis / simulation: 10 alternatives	(none)	Definition and construction of data blocks	735.00	850.00	13,966.00	2011
2 - Develop compre methods	ession	Physical prototypes: 10 samples	(none)	Definition of construction of data blocks	700.00	600.00	0.00	2011
3 - Compression alş dynamic techniques	gorithm with s	Physical prototypes: 3 samples prototype revisions: 12 revisions	Response Time: 22 seconds (84 %) Data to compression: 131 :1 ratio (1260 %) CPU Utilization: 66 % busy (116 %)	Definition and construction of data blocks Data normalization method Definition of construction of data blocks	695.00	6,000.00	2,550.00	2011
4 - Extend data con methods	npression	Process trials: 102 runs / samples	(none)	Data compression method Definition and construction of data blocks	1,230.00	1,200.00	0.00	2011
5 - Correlate comp size with initial dat:	ression block a set	Analysis / simulation: 22 alternatives	(none)	Definition and construction of data blocks Definition of construction of data blocks Methods to characterize non-uniform data	375.00	3,356.14	3,750.00	2011

s

1107 – MS .NET Development Issues

Project Details:

Scientific or Technological Objectives:

Mea	a s	u	r	е	m	е	n	t	Current Performance	Objective	Has results?
Responsi	ivenes	ss (s	tartı	Jp ti	ime)				1	0.1	No
(seconds	;)										
Reduce t	he nu	mbe	r of	dea	ldlocl	ks (‡	#/da	y)	2	0	No
Reduce r	nemo	ry fo	otpr	int ((MB)				1000	900	No

[A SOFTWARE INDUSTRY EXAMPLE PROVIDED BY AUTHOR]

We would like to improve the Performance and Scalability:

A number of application characteristics can affect performance and scalability including: timing issues (deadlocks, races), resource management (memory footprint, garbage collection, native resources such as window & GDI handles), exception handling, thread synchronization, responsiveness (startup time, UI load time, response time & refresh rate in web applications, etc) and ease of code maintenance.

Technology or Knowledge Base Level:

Benchmarking methods & sources for citing	js:	
Benchmark Method/Source	Measurement	Explanatory note
Internet searches	10 sites / articles	Blogs and articles on common errors
Similar prior in-house technologies	1 products / processes	We would like to improve our current software which is written with MS.NET
Potential components	10 products	Microsoft products

The Microsoft .NET Framework is a software component that can be added to or is included with Microsoft Windows operating system. It provides a large body of pre-coded solutions to common program requirements, and manages the execution of programs written specifically for the framework. The .NET Framework is a key Microsoft offering, and is intended to be used by most new applications created for the Windows platform.

Field of Science/Technology:

The Field of Science has not been identified.

Project Details:

Intended Results:	Improve existing materials, devices, or products
Work locations:	Commercial Facility
Key Employees:	None.
Evidence types:	Progress reports, minutes of project meetings; Records of resources allocated to the project, time sheets; Project records, laboratory notebooks

Scientific or Technological Advancement:

Uncertainty #1: architecture optimization METHODS

Key challenges:

While the .NET Framework can help with some of these issues by managing certain aspects (i.e. garbage collection,

Project Name:	MS .NET Development Issues	Start Date:	2011-02-01
Project Number:	1107	Completion Date:	2015-08-31
exception handling)	automatically, this managed environment tends to add an 'overhead',	requiring more system resour	ces

exception handling) automatically, this managed environment tends to add an 'overhead', requiring more system resources than functionally similar applications that access machine resources more directly.

The most significant underlying key variables are:

Optimal thread synchronization (unresolved), Optimal execption handeling method (unresolved), Inter-operability (codes, databases, etc.) (unresolved), Optimal memory management (unresolved)

Activity #1-1:	Potential SRED	Activities	(Fiscal Year 20)11)
----------------	----------------	------------	-----------------	------

Meth	ods o	f expe	erime	ntatic	n:																										
	Μ	e	t	h	ο	d	Е	Х	р	е	r	i	m	е	n	t	а	t	i	ο	n		Ρ	е	r	f	ο	r	m	е	d
	Proc	ess tri	als:				10	0 ru	ns /	/ sa	mpl	les																			
							Int ac	egra cess ET é	ation s the envi	n of e fu iron	Un nct me	ima ion nt,	anag ality but	jed tha cert	Coo It is ain	le: imp inte	The plen egra	e .N ner atio	IET nteo n is	「Fr d in ssu	am pro es r	ewor ograr may	rk p ms still	rovi that ne	de: : ex ed	s th æci to k	ie m ute be a	nea out idd	ns te side ress	o the ed.	Э
							As ex	ide perii	fron mer	n is ntat	sue ion	s c ca	of int n be	ero ca	pera useo	abil d b <u>i</u>	ity, y:	ado	diti	ona	l pe	erforr	nar	nce	iss	ues	s an	ıd r	ealte	ed	
							- la mo an	ate b ore f d sc	oind Iexi ala	ling ble bilit	ano ano y)	d re d a	eflec dapt	tion able	i (th e, b	is is ut a	s a at th	trac e e	dec exp	off - ens	late se o	e bin f typ	din e s	g re afet	su y, i	lts i runi	n co time	ode e pe	e tha erfor	t is ma	nce
							- u ca	nne Iling	ces thr	sar ead	y th I an	rea d t	ad s he C	witc CON	hing 1 ob	g fro jec	om t	fail	ure	e to	ma	tch t	hre	adir	ng I	mo	dels	s be	etwe	en	the
							- u leg	nicc jacy	de co	(us mpo	ed one	by nts	.NE [:]) str	T's (ing	Con con	nm ver	on I rsio	Rur n	ntin	nel	_an	guaç	ge)	to A	NS	SI (I	use	d b	y ma	any	,

Results:

No results have been recorded for this Activity.

Conclusion:

No conclusion has been recorded for this activity.

Documentation:

Offline Documents: .NET

Key Criteria Summary

1 - Potential SRED	Activities Process trials: 100	runs / samples	(none)	(none)	0.00	0.00	0.00	2011				
Activity	Testing Methods		Results - % of Objective	Variables Concluded	management, Hours	Optimal thread Materials \$	synchronization Subcontractor \$	Fiscal Year				
Uncertainty:	1 - architecture optimization ME	THODS		Key Variables:	Inter-operability (codes, databases, etc.), Optimal							
Benchmarks:	Internet searches: 10 sites / arti Similar prior in-house technolog Potential components: 10 produ	cles ies: 1 products / cts		Objectives:	Responsiveness (startup time) : 0.1 seconds Reduce the number of deadlocks: 0 #/day Reduce memory footprint: 900 MB							